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ABSTRACT6

GC skew denotes the relative excess of G nucleotides over C nucleotides on the leading versus the lagging replication strand
of eubacteria. While the effect is small, typically around 2.5%, it is robust and pervasive. GC skew and the analogous TA skew
are a localized deviation from Chargaff’s second parity rule, which states that G and C, and T and A occur with (mostly) equal
frequency even within a strand.
Different bacterial phyla show different kinds of skew, and differing relations between TA and GC skew.
This article introduces an open access database (https://skewdb.org) of GC and 10 other skews for over 30,000 chromosomes
and plasmids. Further details like codon bias, strand bias, strand lengths and taxonomic data are also included. The SkewDB
can be used to generate or verify hypotheses. Since the origins of both the second parity rule and GC skew itself are not yet
satisfactorily explained, such a database may enhance our understanding of prokaryotic DNA.
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Background & Summary8

The phenomenon of GC skew1–3 is tantalizing because it enables a simple numerical analysis that accurately predicts the loci of9

both the origin and terminus of replication in most bacteria and some archaea4, 5.10

Bacterial DNA is typically replicated simultaneously on both strands, starting at the origin of replication6. Both replication11

forks travel in the 5’ to 3’ direction, but given that the replichores are on opposite strands, topologically they are traveling in12

opposite directions. This continues until the forks meet again at the terminus. This means that roughly one half of every strand13

is replicated in the opposite direction of the other half. The forward direction is called the leading strand. Many plasmids also14

replicate in this way7.15

The excess of G over C on the leading strand is in itself only remarkable because of Chargaff’s somewhat mysterious16

second parity rule8, which states that within a DNA strand, there are nearly equal numbers of G’s and C’s, and similarly, T’s17

and A’s. This rule does not directly follow from the first parity rule, which is a simple statement of base pairing rules.18

Depending on who is asked, Chargaff’s second parity rule is so trivial that it needs no explanation, or it requires complex19

mathematics and entropy considerations to explain its existence9.20

The origins of GC skew are still being debated. The leading and lagging strands of circular bacterial chromosomes are21

replicated very differently; it is at least plausible that this leads to different mutational biases. In addition, there are selection22

biases that are theorized to be involved10. No single mechanism may be exclusively responsible.23

This article does not attempt to explain or further mystify11 the second parity rule or GC skew, but it may be that the24

contents of the SkewDB can contribute to our further understanding.25

The SkewDB also contains some hard to explain data on many chromosomes. These include highly asymmetric skew, but26

also very disparate strand lengths. Conversely, the SkewDB confirms earlier work on skews in the Firmicute phylum12, and also27

expands on these earlier findings.28

GC skew has often been investigated by looking at windows of DNA of a certain size. GC skew is computed as29

(G−C)/(G+C) in a window of N bases, where G is the number of guanines and C the number of cytosines in that window. It30

has been found that the choice of window size impacts the results of the analysis. The SkewDB is therefore based exclusively31

on cumulative skew13, which sidesteps window size issues. For example, the sequence GGGCCC has a cumulative GC skew32

of zero, and as we progress through the sequence, this skew takes on values 1, 2, 3, 2, 1, 0. If the window size N is 6, the33

non-cumulative skew is also 0.34

The result of a cumulative GC skew analysis is shown in figure 1. The analysis software fits a linear model on the skews,35

where it also compensates for chromosome files sequenced in the non-canonical direction, or where the origin of replication is36

not at the start of the file.37



GC skew analysis is not new. As noted below, the DoriC database for example contains related data that is more precise for38

its stated purpose (finding the Origin of replication). The SkewIT database4 similarly provides a metric of skew, and also comes39

with an online analysis tool.40

Other work, like the Comparative Genometrics Database14 and the Z Curve Database15 has been foundational, but by dint41

of their age lack an analysis of the tens of thousands of DNA sequences that have become available since the initial availability42

of these databases.43

SkewDB is funded to be updated monthly with the latest sequences from NCBI until 2026.44

Other software that calculates GC skew is available, like for example GraphDNA16, GC Skewing17 and GenSkew. The45

SkewDB delivers far more metrics however, also because it involves annotation data in its calculations. For ease of use, SkewDB46

is made available as a ready to use database, as well as in software form that reproduces this database exactly.47

Methods48

The SkewDB analysis relies exclusively on the tens of thousands of FASTA and GFF3 files available through the NCBI49

download service, which covers both GenBank and RefSeq. The database includes bacteria, archaea and their plasmids.50

Furthermore, to ease analysis, the NCBI Taxonomy database is sourced and merged so output data can quickly be related to51

(super)phyla or specific species.52

No other data is used, which greatly simplifies processing. Data is read directly in the compressed format provided by53

NCBI. All results are emitted as standard CSV files.54

In the first step of the analysis, for each organism the FASTA sequence and the GFF3 annotation file are parsed. Every55

chromosome in the FASTA file is traversed from beginning to end, while a running total is kept for cumulative GC and TA56

skew. In addition, within protein coding genes, such totals are also kept separately for these skews on the first, second and third57

codon position. Furthermore, separate totals are kept for regions which do not code for proteins.58

In addition, to enable strand bias measurements, a cumulative count is maintained of nucleotides that are part of a positive59

or negative sense gene. The counter is increased for positive sense nucleotides, decreased for negative sense nucleotides, and60

left alone for non-genic regions. A separate counter is kept for non-genic nucleotides.61

Finally, G and C nucleotides are counted, regardless of if they are part of a gene or not.62

These running totals are emitted at 4096 nucleotide intervals, a resolution suitable for determining skews and shifts.63

In addition, one line summaries are stored for each chromosome. These lines include the RefSeq identifier of the64

chromosome, the full name mentioned in the FASTA file, plus counts of A, C, G and T nucleotides. Finally five levels of65

taxonomic data are stored.66

Chromosomes and plasmids of fewer than 100 thousand nucleotides are ignored, as these are too noisy to model faithfully.67

Plasmids are clearly marked in the database, enabling researchers to focus on chromosomes if so desired.68

Fitting69

Once the genomes have been summarised at 4096-nucleotide resolution, the skews are fitted to a simple model.70

The fits are based on four parameters, as shown in figure 1. Alpha1 and alpha2 denote the relative excess of G over C71

on the leading and lagging strands. If alpha1 is 0.046, this means that for every 1000 nucleotides on the leading strand, the72

cumulative count of G excess increases by 46.73

The third parameter is div and it describes how the chromosome is divided over leading and lagging strands. If this number74

is 0.557, the leading replication strand is modeled to make up 55.7% of the chromosome.75

The final parameter is shift (the dotted vertical line), and denotes the offset of the origin of replication compared to the76

DNA FASTA file. This parameter has no biological meaning of itself, and is an artifact of the DNA assembly process.77

The goodness-of-fit number consists of the root mean squared error of the fit, divided by the absolute mean skew. This latter78

correction is made to not penalize good fits for bacteria showing significant skew.79

GC skew tends to be defined very strongly, and it is therefore used to pick the div and shift parameters of the DNA80

sequence, which are then kept as a fixed constraint for all the other skews, which might not be present as clearly.81

The fitting process itself is a downhill simplex method optimization18 over the four dimensions, seeded with the average82

observed skew over the whole genome, and assuming there is no shift, and that the leading and lagging strands are evenly83

distributed. To ensure that the globally optimum fit is (very likely) achieved, ten optimization attempts are made from different84

starting points. This fitting process is remarkably robust in the sense that even significant changes in parameters or fitting85

strategies cause no appreciable change in the results.86

For every chromosome and plasmid the model parameters are stored, plus the adjusted root mean squared error.87

Both for quality assurance and ease of plotting, individual CSV files are generated for each chromosome, again at 409688

nucleotide resolution, but this time containing both the actual counts of skews as well as the fitted result.89
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Figure 1. Sample graph showing SkewDB data for Lactiplantibacillus plantarum strain LZ95 chromosome

Some sample findings90

To popularize the database, an online viewer is available on https://skewdb.org/view. While this article makes no independent91

claims to new biological discoveries, the following sections show some results gathered from a brief study of the database.92

Some of these observations may be of interest for other researchers.93

GC and TA skews94

Most bacteria show concordant GC and TA skew, with an excess of G correlating with an excess of T. This does not need95

to be the case however. Figure 2 is a scatterplot that shows the correlation between the skews for various major superphyla.96

Firmicutes (part of the Terrabacteria group) show clearly discordant skews.97

Firmicute prediction98

In many bacteria, genes tend to concentrate on the leading replication strand. If the codon bias of genes is such that they are99

relatively rich in one nucleotide, the “strand bias” may itself give rise to GC or TA bias. Or in other words, if genes contain a100

lot of G’s and they huddle on the leading strand, that strand will show GC skew. As an hypothesis, we can plot the observed GC101

and TA skews for all Firmicutes for which we have data.102

Mathematically the relation between the codon bias, strand bias and predicted GC skew turns out to be a simple multiplication.103

In figure 3, the x-axis represents this multiplication. The y-axis represents the GC and TA skew ratio.104

It can clearly be seen that both GC and TA skew correlate strongly with the codon/strand bias product. TA skew goes to105

zero with the two biases, but GC skew appears to persist even in the absence of such biases.106

Figure 4 shows the situation within an individual chromosome (C. difficile), based on overlapping 40960-nucleotide107

segments. On the x-axis we find the strand bias for these segments, running from entirely negative sense genes to entirely108

positive sense genes. The skew is meanwhile plotted on the y-axis, and here too we see that TA skew goes to zero in the absence109

of strand bias, while GC skew persists and clearly has an independent strand-based component.110

Asymmetric skew111

The vast majority of chromosomes show similar skews on the leading and the lagging replication strands, something that112

makes sense given the pairing rules. There are however many chromosomes that have very asymmetric skews, with one strand113

sometimes showing no skew at all. In figure 5 four chromosomes are shown that exhibit such behavior. The SkewDB lists114

around 250 chromosomes where one strand has a GC skew at least 3 times bigger/smaller than the other one.115
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Figure 2. Scatter graph of 25,000 chromosomes by superphylum, GC skew versus TA skew

Asymmetric strands116

Bacteria tend to have very equally sized replication strands, which is also an optimum for the duration of replication. It is117

therefore interesting to observe that GC skew analysis finds many chromosomes where one strand is four times larger than the118

other strand. In figure 6 four such chromosomes are shown. The SkewDB lists around 100 chromosomes where one strand is at119

least three times as large as the other strand.120

Anomalies121

In many ways, GC skew is like a forensic record of the historical developments in a chromosome. Horizontal gene transfer,122

inversions, integration of plasmids, excisions can all leave traces. In addition, DNA sequencing or assembly artifacts will also123

reliably show up in GC graphs, as elucidated with examples in4.124

Figure 7 shows GC and TA skews for Salmonella enterica subsp. enterica serovar Concord strain AR-0407 (NZ_CP044177.1),125

and many things could be going on here. The peaks might correspond to multiple origins of replication, but might also indicate126

inversions or DNA assembly problems.127

Data Records128

The SkewDB is available through https://skewdb.org, where it is frequently (& automatically) refreshed. A snapshot of the data129

has also been deposited on Dryad19.130

The SkewDB consists of several CSV files: skplot.csv, results.csv, genomes.csv and codongc.csv. In addition, for each131

chromosome or plasmid, a separate _fit.csv file is generated, which contains data at 4096-nucleotide resolution.132

skplot.csv contains all the 4096-nucleotide resolution data as one big file for all processed chromosomes and plasmids. The133

parameters are described in table 1.134

results.csv meanwhile contains the details of the fits. In this table 2, all marked out squares exist. The actual fields are135

called alpha1gc, alpha2gc, gcRMS, alpha1ta, alpha2ta etc. DNA sequence shift and div are also specified, and they come from136

the GC skew. gc0-2, ta0-2 refers to codon position. gcng and tang refer to the non-coding region skews. Finally sb denotes the137

strand bias.138
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Figure 3. Predicted versus actual GC/TA skew for 4093
Firmicutes
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Figure 4. Scatter graph of codon/strand bias versus
GC/TA skew for C. difficile
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Figure 5. Chromosomes with asymmetric skews
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Figure 6. Chromosomes with differing strand lengths

alpha1 alpha2 rms div shift
gc X X X X X
ta X X X
gc0 X X X
gc1 X X X
gc2 X X X
ta0 X X X
ta1 X X X
ta2 X X X
gcng X X X
tang X X X
sb X X X

Table 2. Skew metrics

Table 3 documents the data on codon bias, also split out by leading or lagging strand found in codongc.csv.139
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Figure 7. GC and TA skew for Salmonella enterica subsp. enterica serovar Concord strain AR-0407

abspos locus in chromosome name RefSeq ID
acounts0-4 A nucleotide counter ngcount Counter of non-coding nucleotides
ccounts0-4 C nucleotide counter pospos cumulative positive sense nucleotide counter
gcounts0-4 G nucleotide counter relpos relative position within chromosome/plasmid
tcounts0-4 T nucleotide counter taskew cumulative TA skew
gcskew cumulative GC skew taskew0-3 cumulative TA skew per codon position
gcskew0-3 cumulative GC skew per codon position taskewNG cumulative TA skew for non-coding regions
gcskewNG cumulative GC skew for non-coding regions

Table 1. Fields of skplot.csv

afrac, cfrac, gfrac, tfrac Fraction of coding nucleotides that are A, C, G or T
leadafrac, leadcfrac, leadgfrac, leadtfrac Fraction of leading strand coding nucleotides that are A, C, G or T
lagafrac, lagcfrac, laggfrac, lagtfrac Fraction of lagging strand coding nucleotides that are A, C, G or T
ggcfrac, cgcfrac The G and C fraction of GC coding nucleotides respectively
atafrac, ttafrac The A and T fraction of AT coding nucleotides respectively

Table 3. Fields in codongc.csv

Table 4 documents the fields found in genomes.csv:140

fullname The full chromosome name as found in the FASTA file
acount, ccount, gcount, tcount Count of A, C, G or T nucleotides
plasmid Set to 1 in case this sequence is a plasmid
realm1-5 NCBI sourced taxonomic data
protgenecount Number of protein coding genes processed
stopTAG, TAA, TGA Number of TAG, TAA and TGA stop codons respectively
stopXXX Number of anomalous stop codons
startATG, GTG, TTG Number of ATG, GTG and TTG start codons respectively
startXXX Number of unusual start codons
dnaApos position of DnaA gene (not DnaA box!) in the DNA sequence. -1 if not found.

Table 4. Fields in genomes.csv

Finally, the individual _fit.csv files contain fields called “Xskew” and “predXskew” to denote the observed X=gc, ta etc141

skew, plus the prediction based on the parameters found in results.csv.142
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Technical Validation143

This database models the skews of many chromosomes and plasmids. Validation consists of evaluating the goodness-of-fit144

compared to the directly available numbers.145

The SkewDB fits skews to a relatively simple model of only four parameters. This prevents overfitting, and this model has146

proven to be robust in practice. Yet, when doing automated analysis of tens of thousands of chromosomes, mistakes will be147

made. Also, not all organisms show coherent GC skew.148

rmsGC = 0.0065 rmsGC = 0.0192 rmsGC = 0.0224 rmsGC = 0.0256

rmsGC = 0.0288 rmsGC = 0.0324 rmsGC = 0.0368 rmsGC = 0.0413

rmsGC = 0.0466 rmsGC = 0.0524 rmsGC = 0.0607 rmsGC = 0.0710

rmsGC = 0.0871 rmsGC = 0.1122 rmsGC = 0.1555 rmsGC = 0.2581

Figure 8. SkewDB fits for 16 equal sized quality categories of bacterial chromosomes

Figure 8 shows 16 equal sized quality categories, where it is visually clear that the 88% best fits are excellent. It is therefore149

reasonable to filter the database on RMSgc < 0.16. Or conversely, it could be said that above this limit interesting anomalous150

chromosomes can be found.151

The DoriC database5 contains precise details of the location of the origin of replication. 2267 sequences appear both in152

DoriC and in the SkewDB. The DoriC origin of replication should roughly be matched by the “shift” metric in the SkewDB153

(but see Usage notes). For 90% of sequences appearing in both databases, there is less than 5% relative chromosome distance154

between these two independent metrics. This is encouraging since these two numbers do not quite measure the same thing.155

On a similar note, the DnaA gene is typically (but not necessarily) located near the origin of replication. For over 80% of156

chromosomes, DnaA is found within 5% of the SkewDB “shift” metric. This too is an encouraging independent confirmation of157

the accuracy of the data.158

Finally, during processing numbers are kept of the start and stop codons encountered on all protein coding genes on all159

chromosomes and plasmids. These numbers are interesting in themselves (because they correlate with GC content, for example),160

but they also match published frequencies, and show limited numbers of non-canonical start codons, and around 0.005%161

anomalous stop codons. This too confirms that the analyses are based on correct (annotation) assumptions.162

Usage Notes163

The existential limitation of any database like the SkewDB is that it does not represent the distribution of organisms found in164

nature. The sequence and annotation databases are dominated by easily culturable microbes. And even within that selection,165

specific (model) organisms are heavily oversampled because of their scientific, economic or medical relevance.166

Because of this, care should be taken to interpret numbers in a way that takes such over- and undersampling into account.167

This leaves enough room however for finding correlations. Some metrics are sampled so heavily that it would be a miracle if168

the unculturable organisms were collectively conspiring to skew the statistics away from the average. In addition, the database169

is a very suitable way to test or generate hypotheses, or to find anomalous organisms.170

Finally it should be noted that the SkewDB tries to precisely measure the skew parameters, but it makes no effort to pin171

down the Origin of replication exactly. For such uses, please refer to the DoriC database5. In future work, the SkewDB will172

attempt to use OriC motifs to improve fitting of this metric.173

On https://skewdb.org an explanatory Jupyter20 notebook can be found that uses Matplotlib21 and Pandas22 to create all the174

graphs from this article, and many more. In addition, this notebook reproduces all numerical claims made in this work. The175

SkewDB website also provides links to informal articles that further explain GC skew, and how it could be used for research.176
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Code availability177

The SkewDB is produced using the Antonie DNA processing software (https://github.com/berthubert/antonie2), which is open178

source. In addition the pipeline is fully automated and reproducible, including the retrieval of sequences, annotations and179

taxonomic data from the NCBI website. The software has also been deposited with Zenodo23.180

A GitHub repository is available for this article on https://github.com/berthubert/skewdb-articles, which includes this181

reproducible pipeline, plus a script that regenerates all the graphs and numerical claims from this paper.182
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